Sunday, October 11, 2009

Turbine


A Siemens steam turbine with the case opened.

A turbine is a rotary generator that extracts energy from afluid or air flow and converts it into useful work.

The simplest turbines have one moving part, a rotor assembly, which is a shaft or drum, with blades attached. Moving fluid acts on the blades, or the blades react to the flow, so that they move and impart rotational energy to the rotor. Early turbine examples are windmills and water wheels.

Gas, steam, and water turbines usually have a casing around the blades that contains and controls the working fluid. Credit for invention of the steam turbine is given both to the British Engineer Sir Charles Parsons (1854-1931), for invention of the reaction turbine and to Swedish Engineer Gustav de Laval(1845-1913), for invention of the impulse turbine. Modern steam turbines frequently employ both reaction and impulse in the same unit, typically varying the degree of reaction and impulse from the blade root to its periphery.

A device similar to a turbine but operating in reverse, ie. driven, is a compressor or pump. The axial compressor in many gas turbine engines is a common example. Here again, both reaction and impulse are employed and again, in modern axial compressors, the degree of reaction and impulse will typically vary from the blade root to its periphery.

Claude Burdin coined the term from the Latin turbo, or vortex, during an 1828 engineering competition.Benoit Fourneyron, a student of Claude Burdin, built the first practical water turbine.

Contents

[hide]

[edit]Theory of operation

Turbines impulse v reaction.png

A working fluid contains potential energy(pressure head) and kinetic energy(velocity head). The fluid may becompressible or incompressible. Several physical principles are employed by turbines to collect this energy:

Impulse turbines
These turbines change the direction of flow of a high velocity fluid or gas jet. The resulting impulse spins the turbine and leaves the fluid flow with diminished kinetic energy. There is no pressure change of the fluid or gas in the turbine rotor blades (the moving blades), as in the case of a steam or gas turbine, all the pressure drop takes place in the stationary blades (the nozzles).

Before reaching the turbine, the fluid'spressure head is changed to velocity headby accelerating the fluid with a nozzle.Pelton wheels and de Laval turbines use this process exclusively. Impulse turbines do not require a pressure casement around the rotor since the fluid jet is created by the nozzle prior to reaching the blading on the rotor. Newton's second lawdescribes the transfer of energy for impulse turbines.

Reaction turbines
These turbines develop torque by reacting to the gas or fluid's pressure or mass. The pressure of the gas or fluid changes as it passes through the turbine rotor blades. A pressure casement is needed to contain the working fluid as it acts on the turbine stage(s) or the turbine must be fully immersed in the fluid flow (such as with wind turbines). The casing contains and directs the working fluid and, for water turbines, maintains the suction imparted by the draft tube. Francis turbines and most steam turbines use this concept. For compressible working fluids, multiple turbine stages are usually used to harness the expanding gas efficiently. Newton's third law describes the transfer of energy for reaction turbines.

In the case of steam turbines, such as would be used for marine applications or for land-based electricity generation, a Parsons type reaction turbine would require approximately double the number of blade rows as a de Laval type impulse turbine, for the same degree of heat drop. Whilst this makes the Parsons turbine much longer and heavier, the overall efficiency of a reaction turbine is slightly higher than the equivalent impulse turbine for the same heat drop.

Steam turbines and later, gas turbines developed continually during the 20th Century, continue to do so and in practice, modern turbine designs will use both reaction and impulse concepts to varying degrees whenever possible. Wind turbines use an airfoil to generate lift from the moving fluid and impart it to the rotor (this is a form of reaction). Wind turbines also gain some energy from the impulse of the wind, by deflecting it at an angle. Crossflow turbines are designed as an impulse machine, with a nozzle, but in low head applications maintain some efficiency through reaction, like a traditional water wheel. Turbines with multiple stages may utilize either reaction or impulse blading at high pressure. Steam Turbines were traditionally more impulse but continue to move towards reaction designs similar to those used in Gas Turbines. At low pressure the operating fluid medium expands in volume for small reductions in pressure. Under these conditions (termed Low Pressure Turbines) blading becomes strictly a reaction type design with the base of the blade solely impulse. The reason is due to the effect of the rotation speed for each blade. As the volume increases, the blade height increases, and the base of the blade spins at a slower speed relative to the tip. This change in speed forces a designer to change from impulse at the base, to a high reaction style tip.

Classical turbine design methods were developed in the mid 19th century. Vector analysis related the fluid flow with turbine shape and rotation. Graphical calculation methods were used at first. Formulae for the basic dimensions of turbine parts are well documented and a highly efficient machine can be reliably designed for any fluid flow condition. Some of the calculations are empirical or 'rule of thumb' formulae, and others are based on classical mechanics. As with most engineering calculations, simplifying assumptions were made.

Velocity triangles can be used to calculate the basic performance of a turbine stage. Gas exits the stationary turbine nozzle guide vanes at absolute velocity Va1. The rotor rotates at velocity U. Relative to the rotor, the velocity of the gas as it impinges on the rotor entrance is Vr1. The gas is turned by the rotor and exits, relative to the rotor, at velocity Vr2. However, in absolute terms the rotor exit velocity isVa2. The velocity triangles are constructed using these various velocity vectors. Velocity triangles can be constructed at any section through the blading (for example: hub , tip, midsection and so on) but are usually shown at the mean stage radius. Mean performance for the stage can be calculated from the velocity triangles, at this radius, using the Euler equation:

Typical velocity triangles for a single turbine stage
\Delta\;h = u\cdot \Delta\;v_w

Whence:

\left (\frac{\Delta\;h}{T}\right) =  \left(\frac{u}{\sqrt{T}}\right)\cdot\left(\frac{\Delta\;v_w}{\sqrt{T}}\right)

where:

\Delta\;h =\, specific enthalpy drop across stage
T =\, turbine entry total (or stagnation) temperature
u =\, turbine rotor peripheral velocity
\Delta\;v_w =\, change in whirl velocity

The turbine pressure ratio is a function of \left(\frac{\Delta\;H}{T}\right) and the turbine efficiency.

Modern turbine design carries the calculations further. Computational fluid dynamics dispenses with many of the simplifying assumptions used to derive classical formulas and computer software facilitates optimization. These tools have led to steady improvements in turbine design over the last forty years.

The primary numerical classification of a turbine is its specific speed. This number describes the speed of the turbine at its maximum efficiency with respect to the power and flow rate. The specific speed is derived to be independent of turbine size. Given the fluid flow conditions and the desired shaft output speed, the specific speed can be calculated and an appropriate turbine design selected.

The specific speed, along with some fundamental formulas can be used to reliably scale an existing design of known performance to a new size with corresponding performance.

Off-design performance is normally displayed as a turbine map or characteristic.

[edit]Types of turbines

  • Steam turbines are used for the generation of electricity in thermal power plants, such as plants using coal or fuel oil or nuclear power. They were once used to directly drive mechanical devices such as ships' propellors (eg the Turbinia), but most such applications now use reduction gears or an intermediate electrical step, where the turbine is used to generate electricity, which then powers anelectric motor connected to the mechanical load. Turbo electric ship machinery was particularly popular in the period immediately before and during WWII, primarily due to a lack of sufficient gear-cutting facilities in US and UK shipyards.
  • Gas turbines are sometimes referred to as turbine engines. Such engines usually feature an inlet, fan, compressor, combustor and nozzle (possibly other assemblies) in addition to one or more turbines.
  • Transonic turbine. The gasflow in most turbines employed in gas turbine engines remains subsonic throughout the expansion process. In a transonic turbine the gasflow becomes supersonic as it exits the nozzle guide vanes, although the downstream velocities normally become subsonic. Transonic turbines operate at a higher pressure ratio than normal but are usually less efficient and uncommon. This turbine works well in creating power from water.
  • Contra-rotating turbines. With axial turbines, some efficiency advantage can be obtained if a downstream turbine rotates in the opposite direction to an upstream unit. However, the complication can be counter-productive. A contra-rotating steam turbine, usually known as the Ljungström turbine, was originally invented by Swedish Engineer Fredrik Ljungström (1875-1964), in Stockholm and in partnership with his brother Birger Ljungström he obtained a patent in 1894. The design is essentially a multi-stage radial turbine (or pair of 'nested' turbine rotors) and met with some success, particularly in marine applications, where its compact size and low weight lent itself well to turbo-electric applications. In this radial arrangement, the overall efficiency is typically less than that of Parsons or de Laval turbines.
  • Statorless turbine. Multi-stage turbines have a set of static (meaning stationary) inlet guide vanes that direct the gasflow onto the rotating rotor blades. In a statorless turbine the gasflow exiting an upstream rotor impinges onto a downstream rotor without an intermediate set of stator vanes (that rearrange the pressure/velocity energy levels of the flow) being encountered.
  • Ceramic turbine. Conventional high-pressure turbine blades (and vanes) are made from nickel based alloys and often utilise intricate internal air-cooling passages to prevent the metal from overheating. In recent years, experimental ceramic blades have been manufactured and tested in gas turbines, with a view to increasing Rotor Inlet Temperatures and/or, possibly, eliminating aircooling. Ceramic blades are more brittle than their metallic counterparts, and carry a greater risk of catastrophic blade failure. This has tended to limit their use in jet engines and gas turbines, to the stator (stationary) blades.
  • Shrouded turbine. Many turbine rotor blades have shrouding at the top, which interlocks with that of adjacent blades, to increase damping and thereby reduce blade flutter. In large land-based electricity generation steam turbines, the shrouding is often complemented, especially in the long blades of a low-pressure turbine, with lacing wires. These are wires which pass through holes drilled in the blades at suitable distances from the blade root and the wires are usually brazed to the blades at the point where they pass through. the lacing wires are designed to reduce blade flutter in the central part of the blades. The introduction of lacing wires substantially reduces the instances of blade failure in large or low-pressure turbines.

Tide Turbine

[edit]Other

  • Velocity compound "Curtis". Curtis combined the de Laval and Parsons turbine by using a set of fixed nozzles on the first stage or stator and then a rank of fixed and rotating blade rows, as in the Parsons or de Laval, typically up to ten compared with up to a hundred stagesof a Parsons design. The overall efficiency of a Curtis design is less than that of either the Parsons or de Laval designs, but it can be satisfactorily operated through a much wider range of speeds, including successful operation at low speeds and at lower pressures, which made it ideal for use in ships' powerplant. In a Curtis arrangement, the entire heat drop in the steam takes place in the initial nozzle row and both the subsequent moving blade rows and stationary blade rows merely change the direction of the steam. It should be noted that the use of a small section of a Curtis arrangement, typically one nozzle section and two or three rows of moving blades is usually termed a Curtis 'Wheel' and in this form, the Curtis found widespread use at sea as a 'governing stage' on many reaction and impulse turbines and turbine sets. This practice is still commonplace today in marine steam plant.
  • Pressure Compund Multistage Impulse or Rateau. The Rateau employs simple Impulse rotors separated by a nozzle diaphragm. The diaphragm is essentially a partition wall in the turbine with a series of tunnels cut into it, funnel shaped with the broad end facing the previous stage and the narrow the next they are also angled to direct the steam jets onto the impulse rotor.

[edit]Uses of turbines

Almost all electrical power on Earth is produced with a turbine of some type. Very high efficiency steam turbines harness about 40% of the thermal energy, with the rest exhausted as waste heat.

Most jet engines rely on turbines to supply mechanical work from their working fluid and fuel as do all nuclear ships and power plants.

Turbines are often part of a larger machine. A gas turbine, for example, may refer to an internal combustion machine that contains a turbine, ducts, compressor, combustor, heat-exchanger, fan and (in the case of one designed to produce electricity) an alternator. However, it must be noted that the collective machine referred to as the turbine in these cases is designed to transfer energy from a fuel to the fluid passing through such an internal combustion device as a means of propulsion, and not to transfer energy from the fluid passing through the turbine to the turbine as is the case in turbines used for electricity provision etc.

Reciprocating piston engines such as aircraft engines can use a turbine powered by their exhaust to drive an intake-air compressor, a configuration known as a turbocharger (turbine supercharger) or, colloquially, a "turbo".

Turbines can have very high power density (ie the ratio of power to weight, or power to volume). This is because of their ability to operate at very high speeds. The Space Shuttle's main engines useturbopumps (machines consisting of a pump driven by a turbine engine) to feed the propellants (liquid oxygen and liquid hydrogen) into the engine's combustion chamber. The liquid hydrogen turbopump is slightly larger than an automobile engine (weighing approximately 700 lb) and produces nearly 70,000 hp(52.2 MW).

Turboexpanders are widely used as sources of refrigeration in industrial processes.

Turbines could also be used as powering system for a remote controlled plane that creates thrust and lifts the plane of the ground. They come in different sizes and could be as small as soda can, still be strong enough to move objects with a weight of 100kg.

[edit]Shrouded tidal turbines

An emerging renewable energy technology is the shrouded tidal turbine enclosed in a venturi shaped shroud or duct producing a sub atmosphere of low pressure behind the turbine. It is often claimed that this allows the turbine to operate at higher efficiency (than the Betz limit[1] of 59.3%) because the turbine can typically produce 3 times more power [2] than a turbine of the same size in free stream. This, however, is something of a misconception because the area presented to the flow is that of the largest duct cross-section. If this area is used for the calculation, it will be seen that the turbine still cannot exceed the Betz limit. Further, due to frictional losses in the duct, it is unlikely that the turbine will be able to produce as much power as a free-stream turbine with the same radius as the duct.

Although situating the rotor in the throat of the duct allows the blades to be supported at their tips (thus reducing bending stress from hydrodynamic thrust) the financial impact of the large amount of steel in the duct must not be omitted from any energy cost calculations.

Asymmetric airfoil

As shown in the CFD generated figure[3], it can be seen that a down stream low pressure (shown by the gradient lines) draws upstream flow into the inlet of the shroud from well outside the inlet of the shroud. This flow is drawn into the shroud and concentrated (as seen by the red coloured zone). This augmentation of flow velocity corresponds to a 3-4 times increase in energy available to the turbine. Therefore a turbine located in the throat of the shroud is then able to achieve higher efficiency, and an output 3-4 times the energy the turbine would be capable of if it were in open or free stream. However, as mentioned above, it is not correct to conclude that this circumvents the Betz limit. The figure shows only the near-field flow, which is accelerated through the duct. A far-field image would show a more complete picture of how the free-stream flow is affected by the obstruction.

Considerable commercial interest has been shown in recent times in shrouded tidal turbines as it allows a smaller turbine to be used at sites where large turbines are restricted. Arrayed across a seaway or in fast flowing rivers shrouded tidal turbines are easily cabled to a terrestrial base and connected to a grid or remote community. Alternatively the property of the shroud that produces an accelerated flow velocity across the turbine allows tidal flows formerly too slow for commercial use to be utilised for commercial energy production.

While the shroud may not be practical in wind, as a tidal turbine it is gaining more popularity and commercial use. A non-symmetrical shrouded tidal turbine (the type discussed above) is mono directional and constantly needs to face upstream in order to operate. It can be floated under a pontoon on a swing mooring, fixed to the seabed on a mono pile and yawed like a wind sock to continually face upstream. A shroud can also be built into a tidal fence increasing the performance of the turbines. Several companies (for example, Lunar Energy [4]) are proposing bi-directional ducts that would not be required to turn to face the oncoming tide every six hours.

Cabled to the mainland they can be grid connected or can be scaled down to provide energy to remote communities where large civil infrastructures are not viable. Similarly to tidal stream open turbines they have little if any environmental or visual amenity impact.

Gas turbine


A typical axial-flow gas turbine turbojet, the J85, sectioned for display. Flow is left to right, multistage compressor on left, combustion chambers center, two-stage turbine on right

A gas turbine, also called a combustion turbine, is a rotary engine that extracts energyfrom a flow of combustion gas. It has an upstream compressor coupled to a downstreamturbine, and a combustion chamber in-between. (Gas turbine may also refer to just the turbineelement.)

Energy is added to the gas stream in thecombustor, where air is mixed with fuel andignited. Combustion increases the temperature,velocity and volume of the gas flow. This is directed through a nozzle over the turbine's blades, spinning the turbine and powering the compressor.

Energy is extracted in the form of shaft power, compressed air and thrust, in any combination, and used to power aircraft, trains, ships, generators, and even tanks.

Contents

[hide]

[edit]History

  • 150: Hero's Engine (aeolipile) - apparently Hero's steam engine was taken to be no more than a toy, and thus its full potential not realized for centuries.
  • 1500: The "Chimney Jack" was drawn by Leonardo da Vinci which was turning a roasting spit. Hot air from a fire rose through a series of fans which connect and turn the roasting spit.
  • 1551: Taqi al-Din invented a steam turbine, which he used to power a self-rotating spit.[1]
  • 1629: Jets of steam rotated a turbine that then rotated driven machinery allowed a stamping mill to be developed by Giovanni Branca.
  • 1678: Ferdinand Verbeist built a model carriage relying on a steam jet for power.
  • 1791: A patent was given to John Barber, an Englishman, for the first true gas turbine. His invention had most of the elements present in the modern day gas turbines. The turbine was designed to power a horseless carriage.
  • 1872: A gas turbine engine was designed by Dr Franz Stolze, but the engine never ran under its own power.
  • 1894: Sir Charles Parsons patented the idea of propelling a ship with a steam turbine, and built a demonstration vessel (the Turbinia). This principle of propulsion is still of some use.
  • 1895: Three 4-ton 100 kW Parsons radial flow generators were installed in Cambridge Power Station, and used to power the first electric street lighting scheme in the city.
  • 1903: A Norwegian, Ægidius Elling, was able to build the first gas turbine that was able to produce more power than needed to run its own components, which was considered an achievement in a time when knowledge about aerodynamics was limited. Using rotary compressors and turbines it produced 11 hp (massive for those days). His work was later used by Sir Frank Whittle.
  • 1913: Nikola Tesla patents the Tesla turbine based on the Boundary layer effect.
  • 1914: Application for a gas turbine engine filed by Charles Curtis.
  • 1918: One of the leading gas turbine manufacturers of today, General Electric, started their gas turbine division.
  • 1920: The practical theory of gas flow through passages was developed into the more formal (and applicable to turbines) theory of gas flow past airfoils by Dr A. A. Griffith.
  • 1930: Sir Frank Whittle patented the design for a gas turbine for jet propulsion. His work on gas propulsion relied on the work from all those who had previously worked in the same field and he has himself stated that his invention would be hard to achieve without the works of Ægidius Elling. The first successful use of his engine was in April 1937.
  • 1934: Raúl Pateras de Pescara patented the free-piston engine as a gas generator for gas turbines.
  • 1936: Hans von Ohain and Max Hahn in Germany developed their own patented engine design at the same time that Sir Frank Whittle was developing his design in England.

[edit]Theory of operation

Gas turbines are described thermodynamically by the Brayton cycle, in which air is compressedisentropically, combustion occurs at constant pressure, and expansion over the turbine occurs isentropically back to the starting pressure.

In practice, friction and turbulence cause:

  1. non-isentropic compression: for a given overall pressure ratio, the compressor delivery temperature is higher than ideal.
  2. non-isentropic expansion: although the turbine temperature drop necessary to drive the compressor is unaffected, the associated pressure ratio is greater, which decreases the expansion available to provide useful work.
  3. pressure losses in the air intake, combustor and exhaust: reduces the expansion available to provide useful work.

As with all cyclic heat engines, higher combustion temperature means greater efficiency. The limiting factor is the ability of the steel, nickel, ceramic, or other materials that make up the engine to withstand heat and pressure. Considerable engineering goes into keeping the turbine parts cool. Most turbines also try to recover exhaust heat, which otherwise is wasted energy. Recuperators areheat exchangers that pass exhaust heat to the compressed air, prior to combustion. Combined cycle designs pass waste heat to steam turbine systems. And combined heat and power (co-generation) uses waste heat for hot water production.

Mechanically, gas turbines can be considerably less complex than internal combustion piston engines. Simple turbines might have one moving part: the shaft/compressor/turbine/alternative-rotor assembly (see image above), not counting the fuel system. However, the required precision manufacturing for components and temperature resistant alloys necessary for high efficiency often make the construction of a simple turbine more complicated than piston engines.

More sophisticated turbines (such as those found in modern jet engines) may have multiple shafts (spools), hundreds of turbine blades, movable stator blades, and a vast system of complex piping, combustors and heat exchangers.

As a general rule, the smaller the engine the higher the rotation rate of the shaft(s) needs to be to maintain top speed. Turbine blade top speed determines the maximum pressure that can be gained,this produces the maximum power possible independent of the size of the engine. Jet engines operate around 10,000 rpm and micro turbines around 100,000 rpm.

Thrust bearings and journal bearings are a critical part of design. Traditionally, they have beenhydrodynamic oil bearings, or oil-cooled ball bearings. These bearings are being surpassed by foil bearings, which have been successfully used in micro turbines and auxiliary power units.

[edit]Types of gas turbines

[edit]Aeroderivatives and jet engines

Diagram of a gas turbine jet engine

Airbreathing jet engines are gas turbines optimized to produce thrust from the exhaust gases, or from ducted fans connected to the gas turbines. Jet engines that produce thrust primarily from the direct impulse of exhaust gases are often called turbojets, whereas those that generate most of their thrust from the action of a ducted fan are often called turbofans or (rarely) fan-jets.

Gas turbines are also used in many liquid propellant rockets, the gas turbines are used to power a turbopump to permit the use of lightweight, low pressure tanks, which saves considerable dry mass.

Diagram of a high-pressureturbine blade

Aeroderivatives are also used in electrical power generation due to their ability to startup, shut down, and handle load changes more quickly than industrial machines. They are also used in the marine industry to reduce weight. The GE LM2500 and LM6000 are two common models of this type of machine.

[edit]Amateur gas turbines

Increasing numbers of gas turbines are being used or even constructed by amateurs.

In its most straightforward form, these are commercial turbines acquired through military surplus or scrapyard sales, then operated for display as part of the hobby of engine collecting.[2][3] In its most extreme form, amateurs have even rebuilt engines beyond professional repair and then used them to compete for the Land Speed Record.

The simplest form of self-constructed gas turbine employs an automotive turbocharger as the core component. A combustion chamber is fabricated and plumbed between the compressor and turbine sections.[4]

More sophisticated turbojets are also built, where their thrust and light weight are sufficient to power large model aircraft.[5] The Schreckling design[5] constructs the entire engine from raw materials, including the fabrication of a centrifugal compressor wheel from plywood, epoxy and wrapped carbon fibre strands.

Like many technology based hobbies, they tend to give rise to manufacturing businesses over time. Several small companies now manufacture small turbines and parts for the amateur. Most turbojet-powered model aircraft are now using these commercial and semi-commercial microturbines, rather than a Schreckling-like home-build.[6]

[edit]Auxiliary power units

Auxiliary power units (APUs) are small gas turbines designed for auxiliary power of larger machines, such as those inside an aircraft. They supply compressed air for aircraft ventilation (with an appropriate compressor design), start-up power for larger jet engines, and electrical and hydraulic power.

[edit]Industrial gas turbines for electrical generation

GE H series power generation gas turbine. This 480-megawatt unit has a rated thermal efficiency of 60% in combined cycleconfigurations.

Industrial gas turbines differ from aeroderivative in that the frames, bearings, and blading is of heavier construction. Industrial gas turbines range in size from truck-mounted mobile plants to enormous, complex systems.[clarification needed] They can be particularly efficient—up to 60%—when waste heat from the gas turbine is recovered by a heat recovery steam generator to power a conventional steam turbine in a combined cycle configuration.[7]They can also be run in a cogeneration configuration: the exhaust is used for space or water heating, or drives an absorption chiller for cooling or refrigeration. Such engines require a dedicated enclosure, both to protect the engine from the elements and the operators from the noise.[citation needed]

The construction process for gas turbines can take as little as several weeks to a few months, compared to years for base load power plants.[citation needed] Their other main advantage is the ability to be turned on and off within minutes, supplying power during peak demand. Because they are less efficient than combined cycle plants, they are usually used as peaking power plants, which operate anywhere from several hours per day to a few dozen hours per year, depending on the electricity demand and the generating capacity of the region. In areas with a shortage of base load and load following power plant capacity, a gas turbine power plant may regularly operate during most hours of the day and even into the evening. A typical large single-cycle gas turbine may produce 100 to 300 megawatts of power and have 35–40% thermal efficiency.[citation needed]

The most efficient single-cycle turbines have reached 40% efficiency. "Combined-cycle power plants, in which exhaust heat from a gas turbine driving an electrical generator is used to make steam to power a separate [steam] turbine driving yet another electrical generator, can see efficiencies as high as 58 percent."[8]

[edit]Compressed air energy storage

One modern development seeks to improve efficiency in another way, by separating the compressor and the turbine with a compressed air store. In a conventional turbine, up to half the generated power is used driving the compressor. In a compressed air energy storage configuration, power, perhaps from a wind farm or bought on the open market at a time of low demand and low price, is used to drive the compressor, and the compressed air released to operate the turbine when required.

[edit]Turboshaft engines

Turboshaft engines are often used to drive compression trains (for example in gas pumping stations or natural gas liquefaction plants) and are used to power almost all modern helicopters. The first shaft bears the compressor and the high speed turbine (often referred to as "Gas Generator" or "N1"), while the second shaft bears the low speed turbine (or "Power Turbine" or "N2"). This arrangement is used to increase speed and power output flexibility.

[edit]Radial gas turbines

In 1963, Jan Mowill initiated the development at Kongsberg Våpenfabrikk in Norway. Various successors have made good progress in the refinement of this mechanism. Owing to a configuration that keeps heat away from certain bearings the durability of the machine is improved while the radial turbine is well matched in speed requirement.

[edit]Scale jet engines

Scale jet engines are scaled down versions of this early full scale engine

Also known as miniature gas turbines or micro-jets.

With this in mind the pioneer of modern Micro-Jets, Kurt Schreckling, produced one of the world's first Micro-Turbines, the FD3/67.[9] This engine can produce up to 22 newtons of thrust, and can be built by most mechanically minded people with basic engineering tools, such as a metal lathe. Its radial compressor, which is cold, is small and the hot axial turbine is large experiencing more centrifugal forces, meaning that this design is limited by Mach number. Guiding vanes are used to hold the starter, after the compressor impeller and before the turbine. No bypass within the engine is used.[citation needed]

[edit]Microturbines

A micro turbine designed forDARPA

Also known as:

Microturbines are becoming widespread for distributed power andcombined heat and power applications. They are one of the most promising technologies for powering hybrid electric vehicles. They range from hand held units producing less than a kilowatt, to commercial sized systems that produce tens or hundreds of kilowatts.

Part of their success is due to advances in electronics, which allows unattended operation and interfacing with the commercial power grid. Electronic power switching technology eliminates the need for the generator to be synchronized with the power grid. This allows the generator to be integrated with the turbine shaft, and to double as the starter motor.

Microturbine systems have many advantages over reciprocating engine generators, such as higher power density (with respect to footprint and weight), extremely low emissions and few, or just one, moving part. Those designed with foil bearings and air-cooling operate without oil, coolants or other hazardous materials. Microturbines also have the advantage of having the majority of their waste heat contained in their relatively high temperature exhaust, whereas the waste heat of recriprocating engines is split between its exhaust and cooling system.[10] However, reciprocating engine generators are quicker to respond to changes in output power requirement and are usually slightly more efficient, although the efficiency of microturbines is increasing. Microturbines also lose more efficiency at low power levels than reciprocating engines.

They accept most commercial fuels, such as gasoline, natural gas, propane, diesel, and kerosene as well as renewable fuels such as E85, biodiesel and biogas.

Microturbine designs usually consist of a single stage radial compressor, a single stage radial turbineand a recuperator. Recuperators are difficult to design and manufacture because they operate under high pressure and temperature differentials. Exhaust heat can be used for water heating, space heating, drying processes or absorption chillers, which create cold for air conditioning from heat energy instead of electric energy.

Typical microturbine efficiencies are 25 to 35%. When in a combined heat and power cogenerationsystem, efficiencies of greater than 80% are commonly achieved.

MIT started its millimeter size turbine engine project in the middle of the 1990s when Professor of Aeronautics and Astronautics Alan H. Epstein considered the possibility of creating a personal turbine which will be able to meet all the demands of a modern person's electrical needs, just like a large turbine can meet the electricity demands of a small city. Problems have occurred with heat dissipation and high-speed bearing in these new microturbines. Moreover, their expected efficiency is very low 5-6%. According to Professor Epstein current commercial Li-ion rechargeable batteries deliver about 120-150 Wh/kg. MIT's millimeter size turbine will deliver 500-700 Wh/kg in the near term, rising to 1200-1500 Wh/kg in the longer term.[11]

[edit]External combustion

Most gas turbines are internal combustion engines but it is also possible to build an external combustion gas turbine which is, effectively, a turbine version of a hot air engine.

External combustion has been used for the purpose of using pulverized coal or finely ground biomass (such as sawdust) as a fuel. External combustion gas has been used both directly and indirectly. In the direct system, the combustion products travel through the power turbine. In the indirect system, a heat exchanger is used and clean air travels through the power turbine. The thermal efficiency is lower in the indirect type of external combustion, however the blades are not subjected to combustion products.

[edit]Gas turbines in vehicles

The 1950 Rover JET1
The 1967 STP Oil Treatment Special on display at the Indianapolis Motor Speedway Hall of Fame Museum, with the Pratt & Whitneygas turbine shown.
A 1968 Howmet TX, the only turbine-powered race car to have achieved victory.

Gas turbines are often used on ships, locomotives, helicopters,tanks, and to a lesser extent, on cars, buses, and motorcycles.

A key advantage of jets and turboprops for aeroplane propulsion - their superior performance at high altitude compared to piston engines, particularly naturally-aspirated ones - is irrelevant in automobile applications. Their power-to-weight advantage is far less important.

Gas turbines offer a high-powered engine in a very small and light package. However, they are not as responsive and efficient as small piston engines over the wide range of RPMs and powers needed in vehicle applications. In hybrids, gas turbines reduce the responsiveness problem, and the emergence of the continuously variable transmission may also help alleviate this.

Turbines have historically been more expensive to produce than piston engines, though this is partly because piston engines have been mass-produced in huge quantities for decades, while small gas turbine engines are rarities; however, turbines are mass produced in the closely-related form of the turbocharger.

[edit]Passenger Road Vehicles (Cars, Bikes, and Buses)

A number of experiments have been conducted with gas turbine powered automobiles, the largest by Chrysler[12][13][14]. More recently, there has been some interest in the use of turbine engines for hybrid electric cars. The common turbocharger for gas or diesel engines is also a turbine derivative.

[edit]Concept Cars

In 1950, designer F.R. Bell and Chief Engineer Maurice Wilks from British car manufacturers Rover unveiled the first car powered with a gas turbine engine. The two-seater JET1 had the engine positioned behind the seats, air intake grilles on either side of the car, and exhaust outlets on the top of the tail. During tests, the car reached top speeds of 140 km/h, at a turbine speed of 50,000 rpm. The car ran on petrol, paraffin or diesel oil, but fuel consumption problems proved insurmountable for a production car. It is currently on display at the London Science Museum.

American car manufacturer Chrysler demonstrated several prototype gas turbine-powered cars from the early 1950s through the early 1980s. Chrysler built fifty Chrysler Turbine Cars in 1963 and conducted the only consumer trial of gas turbine-powered cars.[15] Their turbines employed unique rotating recuperatorthat significantly increased efficiency. Chrysler put many cars into the hands of consumers, making this effort a small-scale near-production run.

The original General Motors Firebird was a series of concept cars developed for the 1953, 1956 and 1959Motorama auto shows, powered by gas turbines.

Japanese car manufacturer Toyota demonstrated several gas turbine powered prototype vehicles such as the Century gas turbine hybrid in 1975, the Sports 800 Gas Turbine Hybrid in 1977 and the GTV in 1985. No production vehicles were made.

The fictional Batmobile is often said to be powered by a gas turbine or a jet engine. The 1960s television show vehicle was said to be powered by a turbine engine, with a parachute braking system. For the 1989Batman film, the production department built a working turbine vehicle for the Batmobile prop.[16] Its fuel capacity, however, was reportedly only enough for 15 seconds of use at a time.

In the early 1990s Volvo introduced the Volvo Environmental Concept Car which was a gas turbine powered hybrid car.[17]

In 1993 General Motors introduced the first commercial gas turbine powered hybrid vehicle—as a limited production run of the EV-1 series hybrid. A Williams International 40 kW turbine drove an alternator which powered the battery-electric powertrain. The turbine design included a recuperator. Later on in 2006 GM went into the EcoJet concept car project with Jay Leno.

[edit]Racing Cars

Rover and the British Racing Motors (BRM) Formula One team joined forces to produce the Rover-BRM, a gas turbine powered coupe, which entered the 1963 24 Hours of Le Mans, driven by Graham Hill andRichie Ginther. It averaged 107.8 mph (173 km/h) and had a top speed of 142 mph (229 km/h). American Ray Heppenstall joined Howmet Corporation and McKee Engineering together to develop their own gas turbine sports car in 1968, the Howmet TX, which ran several American and European events, including two wins, and also participated in the 1968 24 Hours of Le Mans. The cars used Continental gas turbines, which eventually set six FIA land speed records for turbine-powered cars.[18]

For open wheel racing, 1967's revolutionary STP Oil Treatment Special four-wheel drive turbine-powered special fielded by racing and entrepreneurial legend Andy Granatelli and driven by Parnelli Jones nearly won the Indianapolis 500; the STP Pratt & Whitney powered turbine car was almost a lap ahead of the second place car when a gearbox bearing failed just three laps from the finish line. In 1971 Lotusprincipal Colin Chapman introduced the Lotus 56B F1 car, powered by a Pratt & Whitney gas turbine. Chapman had a reputation of building radical championship-winning cars, but had to abandon the project because there were too many problems with turbo lag.

[edit]Buses

The arrival of the Capstone Microturbine has led to several hybrid bus designs, starting with HEV-1 by AVS of Chattanooga, Tennessee in 1999, and closely followed by Ebus and ISE Research in California, and Designline in New Zealand. AVS turbine hybrids were plagued with reliability and quality control problems, resulting in liquidation of AVS in 2003. The most successful design by Designline is now operated in 5 cities in 6 countries, with over 30 buses in operation worldwide, and order for several hundred being delivered to Baltimore , and NYC.

[edit]Motorcycles

The MTT Turbine SUPERBIKE appeared in 2000 (hence the designation of Y2K Superbike by MTT) and is the first production motorcycle powered by a turbine engine - specifically, a Rolls-Royce Allison model 250 turboshaft engine, producing about 283 kW (380 bhp). Speed-tested to 365 km/h or 227 mph (according to some stories, the testing team ran out of road during the test), it holds the Guinness World Records for most powerful production motorcycle and most expensive production motorcycle, with a price tag of US$185,000.

[edit]Trains

Several locomotive classes have been powered by gas turbines, the most recent incarnation beingBombardier's JetTrain.

[edit]Tanks

The first use of a gas turbine in an armoured fighting vehicle was in 1954 when a unit, PU2979, specifically developed for tanks by C. A. Parsons & Co., was installed and trialled in a British Conqueror tank.[19] Since then, gas turbine engines have been used as auxiliary power units (APUs) in some tanks and as main powerplants in Soviet/Russian T-80s and U.S. M1 Abrams tanks, among others. They are lighter and smaller than diesels at the same sustained power output but the models installed to date are less fuel efficient than the equivalent diesel, especially at idle, requiring more fuel to achieve the same combat range. Successive models of M1 have addressed this problem with battery packs or secondary generators to power the tank's systems while stationary, saving fuel by reducing the need to idle the main turbine. T-80s can mount three large external fuel drums to extend their range. Russia has stopped production of the T-80 in favour of the diesel-powered T-90 (based on the T-72), while Ukraine has developed the diesel-powered T-80UD and T-84 with nearly the power of the gas-turbine tank.

A turbine is theoretically more reliable and easier to maintain than a piston engine, since it has a simpler construction with fewer moving parts but in practice turbine parts experience a higher wear rate due to their higher working speeds. The turbine blades are highly sensitive to dust and fine sand, so that in desert operations air filters have to be fitted and changed several times daily. An improperly fitted filter, or a bullet or shell fragment that punctures the filter can damage the engine. Piston engines also need well-maintained filters, but they are more resilient if the filter does fail.

Like most modern diesel engines used in tanks, gas turbines are usually multi-fuel engines.

[edit]Naval

The Gas turbine from MGB 2009

Gas turbines are used in many naval vessels, where they are valued for their high power-to-weight ratio and their ships' resulting acceleration and ability to get underway quickly.

The first gas-turbine-powered naval vessel was the Royal Navy'sMotor Gun Boat MGB 2009 (formerly MGB 509) converted in 1947.Metrovick developed the "Beryl" engine equipping an existing F2/3jet engine with a power turbine. As the test was successful, the Fast Patrol Boats Bold Pioneer and Bold Pathfinder built in 1953 were the first ships created specifically for gas turbine propulsion.[20]

The first large, gas-turbine powered ships, were the Royal Navy's Type 81 (Tribal class) frigates, the first of which (HMS Ashanti) was commissioned in 1961.

The Germany Navy launched the first Köln class frigate in 1961 with 2 GTs from BBC in the worlds firstcombined diesel and gas propulsion system.

The Swedish Navy produced 6 Spica class torpedoboats between 1966 and 1967 powered by 3 Bristol Siddeley Proteus 1282, each delivering 4300 hp. They were later joined by 12 upgraded Norrköping class ships, still with the same engines. With their aft torpedo tubes replaced by antishipping missiles they served as missile boats until the last was retired in 2005.[21]

The Finnish Navy issued two Turunmaa class corvettes, Turunmaa and Karjala, in 1968. They were equipped with one 22 000 shp Rolls-Royce Olympus TMB3 gas turbine and three Wärtsilä marine diesels for slower speeds. They were the fastest vessels in the Finnish Navy; they regularly achieved 35 knot speeds and 37,3 knots on sea trials. The Turunmaas were paid off in 2002. Karjala is today a museum ship in Turku, and Turunmaa serves as a flotating machine shop and training ship for Satakunta Polytechnical College.

The next series of major naval vessels were the four Canadian Iroquois class helicopter carrying destroyers first commissioned in 1972. They used 2 ft-4 main propulsion engines, 2 ft-12 cruise engines and 3 Solar Saturn 750 kW generators.

The first U.S. gas-turbine powered ships were the U.S. Coast Guard's Hamilton-class High Endurance Cutters the first of which (USCGC Hamilton) commissioned in 1967. Since then, they have powered theU.S. Navy's Perry-class frigates, Spruance-class and Arleigh Burke-class destroyers, and Ticonderoga-class guided missile cruisers. USS Makin Island, a modified Wasp-class amphibious assault ship, is to be the Navy's first amphib powered by gas turbines. The marine gas turbine operates in a more corrosive atmosphere due to presence of sea salt in air and fuel and use of cheaper fuels.

[edit]Maritime

There have been a number of experiments in which gas turbines were used to power seagoing commercial vessels. The earliest of these experiments may have been the oil tanker "Auris" (Anglo Saxon Petroleum) - circa 1949.

The United States Maritime Commission were looking for options to update WWII Liberty ships and heavy duty gas turbines were one of those selected. In 1956 the "John Sergeant" was lenghened and installed with a General Electric 6600 SHP HD gas turbine, reduction gearing and a variable pitch propeller. It operated for 9700 hours using residual fuel for 7000 hours. The success of this trial opened the way for more development by GE on the use of HD gas turbines for marine use with heavy fuels. The "John Sergeant" was scrapped in 1972 at Portsmouth PA.

Between 1970 and 1982, Seatrain Container Lines operated a scheduled container service across the North Atlantic with four 26,000 tonne dwt. container ships. Those ships were powered by twin Pratt & Whitney gas turbines of the FT 4 series. The four ships in the class were named "Euroliner", "Eurofreighter", "Asialiner" and "Asiafreighter". They operated a transatlantic container service between ports on the eastern seaboard of the United States and ports in north west Europe. Following the dramatic OPEC price increases of the mid-nineteen seventies, operations were constrained by rising fuel costs. Some modification of the engine systems on those ships was undertaken to permit the burning of a lower grade of fuel (i.e. marine diesel). The modifications were partially successful. It was proved that particular fuel could be used in a marine gas turbine but, savings made were less than anticipated due to increased maintenance requirements. After 1982 the ships were sold, then re-engined with more economical diesel engines. Because the new engines were much larger, there was a consequential loss of some cargo space.

The first passenger ferry to use a gas turbine was the GTS Finnjet, built in 1977 and powered with twoPratt & Whitney FT 4C-1 DLF turbines, generating 55000 kW and propelling the ship to a speed of 31 knots. However, the Finnjet also illustrated the shortcomings of gas turbine propulsion in commercial craft, as high fuel prices made operating her unprofitable. After just four years of service additional diesel engines were installed on the ship to allow less costly operations during off-season. Another example of commercial usage of gas turbines in a passenger ship are Stena Line's HSS class fastcraft ferries. HSS 1500-class Stena Explorer, Stena Voyager and Stena Discovery vessels use combined gas and gas(COGAG) setups of twin GE LM2500 plus GE LM1600 power for a total of 68,000 kW. The slightly smaller HSS 900-class Stena Charisma, uses twin ABBSTAL GT35 turbines rated at 34,000 kW gross. The Stena Discovery was withdrawn from service in 2007, another victim of too high fuel costs.

In July 2000, the Millennium became the first cruise ship to be propelled by gas turbines, in a Combined Gas and Steam Turbine configuration. The RMS Queen Mary 2 uses a Combined Diesel and Gas Turbine configuration.[22]

[edit]Advances in technology

Gas turbine technology has steadily advanced since its inception and continues to evolve; research is active in producing ever smaller gas turbines. Computer design, specifically CFD and finite element analysis along with material advances, has allowed higher compression ratios and temperatures, more efficient combustion and better cooling of engine parts. On the emissions side, the challenge in technology is increasing turbine inlet temperature while reducing peak flame temperature to achieve lower NOx emissions to cope with the latest regulations. Additionally, compliant foil bearings were commercially introduced to gas turbines in the 1990s. They can withstand over a hundred thousand start/stop cycles and eliminated the need for an oil system.

On another front, microelectronics and power switching technology have enabled commercially viable micro turbines for distributed and vehicle power.

[edit]Advantages and disadvantages of gas turbine engines

[edit]Advantages of gas turbine engines

[23]

  • Very high power-to-weight ratio, compared to reciprocating engines;
  • Smaller than most reciprocating engines of the same power rating.
  • Moves in one direction only, with far less vibration than a reciprocating engine.
  • Fewer moving parts than reciprocating engines.
  • Low operating pressures.
  • High operation speeds.
  • Low lubricating oil cost and consumption.

[edit]Disadvantages of gas turbine engines

[citation needed]

  • Cost is much greater than for a similar-sized reciprocating engine since the materials must be stronger and more heat resistant. Machining operations are also more complex;
  • Usually less efficient than reciprocating engines, especially at idle.
  • Delayed response to changes in power settings.

These disadvantages explain why road vehicles, which are smaller, cheaper and follow a less regular pattern of use than tanks, helicopters, large boats and so on, do not use gas turbine engines, regardless of the size and power advantages imminently available.